1. A cylindrical block of wood has a cross-sectional area A and weight W. It is totally immersed in water with its axis vertical. The block experiences pressures p_t and p_b at its top and bottom surfaces respectively. Which of the following expressions is equal to the upthrust on the block?

$$\text{Upthrust} = \frac{(\rho_2 - \rho_1)A}{(\rho_2 - \rho_1)A - W}$$

2. A mass of a liquid of density ρ is thoroughly mixed with an equal mass of another liquid of density 2ρ. No change of the total volume occurs. What is the density of the liquid mixture?

3. At a depth of 20 cm in a liquid of density 1800 kgm^{-3}, the pressure due to the liquid is p. Another liquid has a density of 1200 kgm^{-3}. What is the pressure due to this liquid at a depth of 60 cm?

4. The graph shows how the pressure exerted by a liquid varies with depth below the surface.

5. An object, immersed in a liquid in a tank, experiences an upthrust. What is the physical reason for this upthrust?

6. A bore hole of depth 2000 m contains both oil and water as shown. The pressure at the bottom is 17.5 MPa. The density of the oil is 830 kg m$^{-3}$ and the density of the water is 1000 kg m$^{-3}$. What is the depth x of the oil?

7. The hydrostatic pressure p at a depth h in a liquid of density ρ is given by the formula $p = \rho gh$. Which equation, or principle of physics, is used in the derivation of this formula?

8. Why does the pressure increase when a sealed container of gas is heated?

9. Liquids X and Y are stored in large open tanks. Liquids X and Y have densities of 800 kgm^{-3} and 1200 kgm^{-3} respectively. At what depths are the pressures equal?

10. Which force is caused by a pressure difference?

11. A submarine is in equilibrium in a fully submerged position. What causes the upthrust on the submarine?

Pressure & Density

May 02

1. A cylindrical block of wood has a cross-sectional area A and weight W. It is totally immersed in water with its axis vertical. The block experiences pressures p_t and p_b at its top and bottom surfaces respectively. Which of the following expressions is equal to the upthrust on the block?

$$\text{Upthrust} = \frac{(\rho_2 - \rho_1)A}{(\rho_2 - \rho_1)A - W}$$

2. A mass of a liquid of density ρ is thoroughly mixed with an equal mass of another liquid of density 2ρ. No change of the total volume occurs. What is the density of the liquid mixture?

Nov 02

3. At a depth of 20 cm in a liquid of density 1800 kgm^{-3}, the pressure due to the liquid is p. Another liquid has a density of 1200 kgm^{-3}. What is the pressure due to this liquid at a depth of 60 cm?

Nov 03

4. The graph shows how the pressure exerted by a liquid varies with depth below the surface.

What is the density of the liquid?

A 600 kgm^{-3} B 760 kgm^{-3} C 5900 kgm^{-3} D 7500 kgm^{-3}

June 04

5. An object, immersed in a liquid in a tank, experiences an upthrust. What is the physical reason for this upthrust?

A The density of the body differs from that of the liquid.
B The density of the liquid increases with depth.
C The pressure in the liquid increases with depth.
D The value of g in the liquid increases with depth.

Nov 04

6. The diagram shows two liquids, labelled P and Q, which do not mix. The liquids are in equilibrium in an open U-tube. What is the ratio of the density of P to the density of Q?

A $\frac{1}{2}$ B $\frac{2}{3}$ C $\frac{3}{2}$ D 2

May 05

7. The hydrostatic pressure p at a depth h in a liquid of density ρ is given by the formula $p = \rho gh$. Which equation, or principle of physics, is used in the derivation of this formula?

A density = mass ÷ volume
B potential energy = mgh
C atmospheric pressure decreases with height
D density increases with depth

Nov 05

8. Why does the pressure increase when a sealed container of gas is heated?

A The gas molecules collide more often with each other.
B The gas molecules expand when they are heated.
C The gas molecules travel faster and hit the walls of the container more often.
D There are more gas molecules present to collide with the walls of the container.

9. Liquids X and Y are stored in large open tanks. Liquids X and Y have densities of 800 kgm^{-3} and 1200 kgm^{-3} respectively. At what depths are the pressures equal?

10. Which force is caused by a pressure difference?

A friction B upthrust C viscous force D weight

11. A bore hole of depth 2000 m contains both oil and water as shown. The pressure at the bottom is 17.5 MPa. The density of the oil is 830 kgm^{-3} and the density of the water is 1000 kgm^{-3}. What is the depth x of the oil?

A 907 m B 1000 m C 1090 m D 1270 m

Nov. 06

12. A submarine carries a pressure meter so that the crew can work out how far they are below the surface of the sea. At the surface, the meter indicates a pressure of 100 kPa. The density of seawater is 1030 kgm^{-3}. What is the depth below the surface when the meter reads 450 kPa?

A 34.6 m B 44.5 m C 340 m D 437 m

June 08

13. A submarine is in equilibrium in a fully submerged position. What causes the upthrust on the submarine?

A The air in the submarine is less dense than sea water.
B The sea water exerts a greater upward force on the submarine than the weight of the steel.
C The submarine displaces its own volume of sea water.
D There is a difference in water pressure acting on the top and bottom of the submarine.
PhysicsAndMathsTutor.com

14. Why does an ideal gas exert pressure on its container?
A The molecules of the gas collide continually with each other.
B The molecules of the gas collide continually with the walls of the container.
C The molecules of the gas collide inelastically with the walls of the container.
D The weight of the molecules exerts a force on the walls of the container.

15. The density of mercury is $13.6 \times 10^3 \text{kg m}^{-3}$. The pressure difference between the bottom and the top of a column of mercury is 100 kPa. What is the height of the column?
A 0.75 m B 1.3 m C 7.4 m D 72 m

16. The diagram represents a sphere under water. P, Q, R, and S are forces acting on the sphere, due to the pressure of the water.

Each force acts perpendicularly to the sphere’s surface. P and R act in opposite directions vertically. Q and S act in opposite directions horizontally.
Which information about the magnitudes of the forces is correct?
A $P < R; S = Q$ B $P > R; S = Q$
C $P = R; S = Q$ D $P = R = S = Q$

17. The diagram shows a flask connected to a U-tube containing liquid. The flask contains air at atmospheric pressure.

The flask is now gently heated and the liquid level in the right-hand side of the U-tube rises through a distance h. The density of the liquid is ρ.
What is the increase in pressure of the heated air in the flask?
A $h \rho$ B $\frac{1}{2} h \rho g$ C $h \rho g$ D $2h \rho g$

18. In the kinetic model of gases, what is pressure equal to?
A the number of atoms hitting and rebounding from a surface of the gas container
B the number of atoms hitting and rebounding from a unit area of the gas container surface
C the force exerted by the atoms hitting and rebounding from a surface of the gas container
D the force exerted by the atoms hitting and rebounding from a unit area of the gas container surface

A rectangular metal bar exerts a pressure of 15 200 Pa on the horizontal surface on which it rests.
If the height of the metal bar is 80 cm, what is the density of the metal?
A 190 kg m$^{-3}$ B 1900 kg m$^{-3}$ C 19 000 kg m$^{-3}$ D 190 000 kg m$^{-3}$

June 10
20. An object, immersed in a liquid in a tank, experiences an upthrust. What is the physical reason for this upthrust?
A The density of the body differs from that of the liquid.
B The density of the liquid increases with depth.
C The pressure in the liquid increases with depth.
D The value of g in the liquid increases with depth.

21. Atmospheric pressure at sea level has a value of 100 kPa. The density of sea water is 1020 kg m$^{-3}$. At what depth in the sea would the total pressure be 110 kPa?
A 1.0 m B 9.8 m C 10 m D 11 m

Answers
1 c 6 a 11 b
2 a 7 a 12 a
3 c 8 c 13 d
4 b 9 c 14 b
5 c 10 b 15 a
6 a 17 d 18 c
9 c 20 c
10 b

PhysicsAndMathsTutor.com